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ISOLATED AND CASCADE AIRFOILS WITH PRESCRIBED VELOCITY DISTRIBUTION

By ArTEUr W. GoupsTEIN and MEevYER JERISON

SUMMARY

An eract solution of the problem of designing an airfoil with
a prescribed velocity distribution on the suction surface in a
given uniform flow of an incompressible perfect fluid is obtained
by replacing the boundary of the airfoil by vortices. By ihis
device, @ method of solution is deceloped that is applicable both
to isolated airfoils and fo airfoils in cascade. The conformal
transformation of the designed airfoil into a eircle can then be
obtained and the velocity distribution at any angle of attack
computed. Numerical illustraiions of the method are given for
the airfoil in cascade.

INTRODUCTION

The problem of increasing the output per stage in axial-
flow compressors and turbines involves the use of high-
solidity (closely spaced blades) stages of highly cambered
blades. In addition, the velocity distribution must be care-
fully selected as a function of arc length along the airfoil
(blade section) boundary in order to avoid flow separation or
excessively high local velocities.

Several methods are available for obtaining an airfoil with
a prescribed velocity distribution. The methods that lead to
theoretically exact results are based on conformal-mapping
theory. (See references 1 and 2.) In reference 3, Mutterperl
extends the method of conformal mapping to solve the
problem of computing a cascade of airfoils with preseribed
velocity distribution but, for caseades with closely spaced or
highly cambered airfoils, this procedure becomes very cum-
bersome. Approximate solutions have been obtained by
placing singularities such as vortices, sources, and sinks in &
uniform stream. The shape of sections of airfoils in cascade
can also be computed by disiributing such singularities
periodically throughout the region of the cascade, as described
by Ackeret (reference 4j.

Because these vortex methods are not exact, a method
with the vortices on the boundaries of the cascade airfoils
was developed. This method gives a theoretically exact solu-
tion without the computation difficulties encountered in
conformal-mapping methods for highly cambered airfoils or
closely spaced cascades. Furthermore, for the same accuracy
in computing the airfoil shape, this vortes method requires
the computation of fewer points than the method of conformal
mapping because these points may be arbitrarily placed on
the airfoil. The method may be applied to isolated airfoils
and to airfoils in cascade. For the cascade, the inflow and
discharge velocities and a velocity distribution on the surface

of an airfoil are given and the shape of the airfoil is deter-
mined. In some cases, the spacing of the blades is pre-
assigned, which places a condition on the assumed velocity
distribution.
velocity distribution may be computed for any angle of
attack by the method deseribed in appendix A. The method
of this paper was developed at the NACA Cleveland labora-
tory during 1946.
THEORY

OUTLINE OF METHOD

In reference 5, it is demonstrated that the two-dimensional
potential flow about a body in a uniform stream can be

Once the airfoil shape has been evolved, the

represented by substituting for the body a sheet of vortices.

along its boundary. The vortex strength per arc length at
any point is equal to the magnitude of the velocity at that
point. A proof of this relation for the case of the cascade is
given in appendix B. The problem of finding a shape with
a prescribed velocity distribution when placed in a stream
can then be stated: Given a vortex distribution, to find a
contour which satisfies the condition that it will be a stream-
line in the flow field induced by the uniform flow and the
vortices distributed on the contour.

The procedure of finding the shape begins by choosing an
approximate shape and distributing the vortices on it. The
stream function of the flow induced by the vortices and the
uniform stream is computed at points on the boundary of
the assumed shape. If this stream function is constant, the
assumed shape is correct. Variations of the stream function
are a measure of the deviation of the assumed shape from
the correct one. These variations are used to distort the
original shape into & new shape whose stream funetion is
more nearly constant. The process is repeated until the
variations become negligible.
ment, the velocity 1s altered on the pressure surface.

DERIVATION OF EQUATIONS FOR THE STREAM FUNCTION

Isolated airfoil—The complex or reflected velocity

w’(z) (which is the derivative of the complex potential func-
tion w(z)) induced at the pomt z=x+1y by a vortex of
strength k located at z,=z,11y, is

E1

w'(2) T 2miz—gz,

{A summary of the principal symbols used in this report is
given in appendix C.)
201

In the process of shape adjust-~
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The complex velocity w’(z) induced by a uniform stream
with complex velocity w,” and a distribution of vortex
strength per unit length v(z,) along a curve with coordinates
2, 18
'Y(zo) dso

2—z,

) ! e
w (2) =w, +35 (1)
where ds, is the clement of arc length along the curve. The
complex potential at the point z is the integral of w'(z) with
respect to z, namely

w(g)zzwu,"{"%ﬂf')/(za) log (z—z,) ds, (2)

From reference 1 (notaiion modified),

v(20) ds,=w'(2,) d202d20<za)=dq9(20)+’2: dy(z,)

where
¢ velocity potential, Rlw(z)]
¢ stream function, ITw(2)]

When equation (2} is applied to obtain the complex
potential function at any point 2 in the flow field, the in-
tegration must be carried out along the boundary of the
body. Because this curve is a streamline, d¢=0 and, there-
fore, equation (2) becomes -

()= + o f log (z—2) de(z)  (28)

The imaginary part of equation {2a) is the stream function
at the point z,

v=—aVtyVems | log VGmm F U=y de(z) )

where
V, y-component of uniform stream velocity V
T, a-component of uniform stream velocity V

It is convenient to use the arc length along the airfoil as
a parameter. If (z,9) is a point on the airfoil boundary, then
¢ will denote the arc length there; similarly, s, will denote
the arc length at (z,, ¥,). The vortex at s, on the airfoil

influences the stream function at the point s on the airfoil,
The stream function induced at (z,) by a vortex of unit
strength at (., ¥,) is

ez == log =2+ (=) )

A plot in the {(z,5) plane of curves for a constant f;(z,2,)
consists of concentric circles with center at (2., ¥o).

The velocity at the point s, on the airfoil is the directional
derivative ¢’(s,) of the potential along the streamline.
If the velocity along the airfoil has been specified and an
airfoil shape has been assumed, the resultant stream func-
tion along the boundary of the airfoil can be approximated
by using the approximate shape in evaluating the integral

4
VO =0u06) = [ Fis, 8¢ (52 dso 5)

where

¥ (s)stream functionat(z,7) due to uniform stream, —zV,+y 1,
I total arc length of airfoil

All variables are expressed in terms of the arc-length para-
meters s and s,. The integral in equation (5) can be evalu-
ated either numerically or graphically over the entire range
of integration except in the region where ¢ (=s—s,) is small,
for in this region f(s,s,) becomes infinite. This portion of
the integral can be evaluated by approximating the airfoil
boundary by a line segment. Then,

1
Ji(s, 80) zg log (s—s,)?
The prescribed velocity can be given in this region, which
may be defined by s—a=s,<s-+a, by a Taylor's series as
a function of s, about the point s,

)=o)+ () 6mF o (s -

where the primes indicate derivatives with respect to s,
The integral is then

s4-a s+a 1 )
ﬁ T8¢ ) dse= [ o (=9 [ () H e (D sa—9)+ T s,

Z%[mp'(&‘) (log a—l)+@%s—) <log a—-é)+- : ] (6)

In most cases, only the first term need be used in equation (6).

The same type of approximation can be used to evaluate

a portion of the integral if the opposite side of the airfoil comes in the neighborhood of the point (z,).
A more general equation applicable to a segment that does not pass through s is:

=) ” log (=2 (=) 62) ds)= 4
4 [ Y—%o §9(Sa} () e
©

90”’(29)
31

{ﬁf’ (p) I:C log (h2+4¢%)—b log (h2-++b%) —2(c—b) -2k tan~!
D) gty log (et — (BB log (2B — (&

& log (h-hct) — b8 log (1) —3 (¢

L h{e—0)
% +bc:l+
~0)l+

B)+

R (e—B)— 218 tan~t EZ ]+ % (62)

Ri+-be
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where A is the perpendicular distance from s to the segment,
's,=p locates the foot of the segment, (p-6) and (p+¢)
are the limits of the integration of s,, and approximately,

o

o' (p)y=¢"(p+b)— bsa"(p+b)—}7w’”(p*b)

e (p)=0o" (p+b)—bs"""(p+)
" (p)=¢" (p+5)

Equation (6a) may be used when the line segment is not
of equal lengths on either side of the perpendicular foot or
when o'(s) or its derivatives are discontinuvous at either
(p+6) or (p+e). If a=e=—>b and h=0, equation (6a}
reduces to equation (6). The size of @, b, or ¢ is deter-
mined by the requirements that the segment in question
be nearly straight (the approximation is of the second degree)
and that «’(s,) be accurately represented by a Taylor’s
series expanxlon of few terms.

=2 . I H 1 M
Vo) Vz v Vi

Vs vz

Exif-velocity diagram Complete-velocity dragram

J J

Enfronce -velocity diagram wz’ wm' Wi
Reflected-velocity diagram

Va1

Vy Vl

FIGrRE 1.—Notation for easeade fow.

Airfoils in cascade.—The expression for the complex po-
tential for the flow about a cascade of airfoils is derived in
appendix B. The notation is defined in figure 1. The
equation that corresponds to equation (2a) for isolated air-
foils is for a cascade of airfoils

1 . w . .
+2_7r?: flog [sm 3 (z—za)] de(z,) (7

w, mean stream velocity, which is one-half the sum of
complex (reflected) velocities upstream and down-
stream of cascade, 1,—117

S distance between successive airfoils in cascade

The mean velocity w,’ corresponds to the uniform velocity

w,” of the isclated airfoil flow.

The term 2wy, is the complex potential function resulting
from the mean flow. In the integral, the element d¢ indi-

wiz)=zw,"

where
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cates the vortex-element strength and log [sin (#/S) (2-z.)]
represents the complex potential at the point z caused by an
infinite row of unit vortices at z,-tnS where n=0, 1,

2, . ... The imaginary part of equation (7) is'the stream
funection,
2e=1
U=t = [ 5,80 de(s) ®)
where

folss) = log] sin § (r—z)+sinke § (y—y2) |

is expressed in arc-length parameters and ¢, (s) is the stream
function at (r,y) induced by a mean stream whose complex
velocity is w,’; that is,

Y= '—IITy":—yI’z
The values of (#-2,}/S and (y-y,)/S for various values of f;
are given in table I. A plot of x», and y-y, for constant
values of £:(z,z,} is shown in figure 2. These curves may be

J2 (2~ Ty, Y-Yo) (y-vyo)
a3

(-2}

FIGTRE 2.—Plot of curves for constant falr—xe, y—§e)-

interpreted as the streamlines of the flow induced by an
infinite row of vortices of unit strength located at the points
(xo£nS, y,), where n=0, 1, 2, In the region of a
vortex, the streamlines are nearly circles; that is, the flow is
nearly that induced by an isolated vortex. At a distance
from the vortex row, the streamlines are parallel lines, as in
the flow pattern induced by a continuous uniform distribu-
tion of vorticity along a straight line instead of a row of
discrete vortices. The velocities on the two sides of such a
vortex line are of equal magnitude but opposite in direction.

This behavior of f; for large |y—,|/S and also for small
(y—yo)-&(.r—x,,)? can be described as follows: When both

A,

(x—x,) /S and (y—yg)/S are smﬂll,

J2(z, 20) “— —log = [(I—Ia)2+(y*ya)g] (9

which differs from f1(4, z,) only by a constant. For large
values of ly—u,|/S, irrespective of (x—z,)/S and a constant
term,

falz, 20) z[—y—;g (10)

which is the stream function of 2 uniform stream parallel
to the r-axis
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Equation (8) can be used for computing the stream function along the boundary of an airfoil in cascade just as

equation (5) is used for the isolated airfoil.
using equation (9) for f; (s,8,).

The more general equation (6a) is modified for cascades by
multiplying the argument of all 100a11thms by the factor
21Q2

/S ADJUSTMENT OF SHAPE

If the stream function for the assumed airfoil has been
computed and has been found to vary, the shape must then
be adjusted to give a more nearly constant stream function.
The shape changes are made by rotation of the body plus
displacement of the individual points normal to the mean
stream. The rotation is used to place the front stagnation
point properly.

Rotation of the airfoil—In the formula for computing the
stream function of an isolated airfoil, the confribution of a
vortex element at (z,, ¥,) to the stream function of a point at
(z, ¥) is dependent merely on the distance between the two
points. Consequently, if the entire airfoil is rotated, the
effect of the boundary vortices on the stream function at any
poing on the airfoil boundary will not change. The effect of
the blade rotation on the stream function along the houndary
is therefore determined by the change in relative position of
the points in the uniform stream. The first adjustment in
shape is a rigid rotation of the airfoil in order to obtain a
more nearly constant stream function along its boundary.

If the airfoil is rotated through an angle 8, the stream
function is so changed that ¢ (s) is a function of 8 and ¢ and

The integral over the range in the neighborhood of the point s is obtained by
The result, derived in the same manner as equation (6), is

™ ﬁiafz(é‘, 80) ¢’ (85) dso= {asai(s)[log <§ ‘I)~ 1]—}—(@3 <p”:;!(S) l:log <§ a>_% o

3 (6b)

may be written ¢ (s, §). When =0, ¢ (s, 0} is the original
stream function before rotation. After rotation the new
stream function ¢ (s, 8) may be expanded in a Taylor’s series
about the point 8=0,

(.8 =¥(s,0)+ 8 [WS 170

B=0

Only the first two terms in this series will be used because 8
is assumed to be small. The angle 8 is to be determined for
the minimum mean-square deviation of the stream function
from its mean value. Because the object of the rotation is
essentially to adjust the shape of the nose, the rotation might
also be made to reduce the root-mean-square deviation of the
stream function to a minimum for a portion of the shape
including the nose.

The mean value of the stregm function at any angle 8 is

vo=3[ vopa—[ {pen+s[Sen ], L av

The difference between the new stream function ¢ (s, 8) and
its mean value ¥ (8) is squared and integrated to obtain a
measure of the variation of ¥ (s, f) from the mean value at
the new angle. The condition for obtaining a minimum
root-mean-square deviation by adjusting 8 is

o= | [weo—30 [as=F [ [960+5 L5230 |as

[ Jseots WEO_ i |[He0_ET, 12)
2 [ HEO] g0+ HE0—3(e) | ds—
dwﬁ) T (*T (0046 2450705 (13)

The second integral vanishes by virtue of equation (11),
which may also be used to eliminate ¥ (8) from the remaining
term. The solution for 8 is

f,,b()d‘”(so)d _1U¢ )d]U‘dﬂsO) ]
5] [T

In order to apply equation (14), dy/d8 must be known at
points along the boundary of the airfoil. For the isolated
airfoil, the contribution of the vortices is unaffected by the
rotation and therefore

dy_dibu_
dg dp dﬁ a8

If the airfoil is rotated about the point (z,, ¥.), equation (15)
becomes

dx
Ildﬁ-{— Vx

Th=co0s 61— Verk (=99 Vil
sin 6 [(z—2) Vy— (=2 V2] (16)

where (x,%) are the coordinates of the point before rotation.
For small values of 8, equation (16) reduces to

= (@—2) Vot U—¥y) Vy (17

The choice of (z;, y,) will have no effect on the results in this
case.

When the airfoil in cascade is rotated, the change in the
position of the vortices of the adjacent blade must be con-
sidered. For the isolated airfoil, it was unnecessary {o con-
sider the change in position of the vortices because the
influence of a vortex (equations (3), (4}, and (5}) depended
on the function f;, which is constant on circles. The influence
of the vortices on the airfoil is therefore independent of
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direction. Because the f; contours are not circles, the rota-
tion in cascade does have an effect, which is approximated
by considering all closed f; curves (<0} as circles in order
that the effect of all vortices in the region <0 may be
neglected during rotation. The effect of all vortices in the
region f, >0 is estimated by assuming that all the £ contours
for f,>>0 are straight lines uniformly spaced. The flow
corresponds to that between two infinite straight parallel
vortex sheets of uniform strength per unit length. 'This
flow induced by the vortices in the region £z >0 is in the
r-direction, and the direction of the flow induced by the
vortices for which y, > is opposite in sense to that indueed
by the vortices for which v,<y.

As the point being considered is changed, the regions for
>0, y,>y, and >0, y.<y will include different sections
of the blades, and hence different vorticity, with the result
that the z-velocity component 2, induced by the vortex
sheets will vary with the point under consideration. The
algebraic sum of the z-component of the wuniform flow
veloeity and the variable x-velocity », induced by the vortices
in the region £ >0 is to be used like the velocity component
V7 in rotation of the isolated airfoil {equation (17)). The
quantity 17, in equation (17) is replaced by the corresponding
Ver=Vs+w.. The vortex strength per unit length at any
poing on the airfoil is equal to ¢'(s,) and, therefore, from
equation (10) tl}e r-component of the velocity induced by the

1

vortices is "_S_] ©’(s0) ds,, where the integration is carried
Eniaed ¥

out over the portion of the airfoil where fi(s,s,)>0. A
distinction must be made between the two regions y,<y and
Yo>y because the induced velocity components have oppo-
site directions.

The computed result of rotating an airfoil in cascade de-
pends upon the choice of (z.7.). In order to minimize the
error involved, values of d¢/dB are reduced by choosing
{z.y.) as the centroid of the vortex distribution on the airfoil.
If the improvement in the mean-square deviation of ¢ is
small compared with its original value, it may be preferable
to omit the rotation of the airfoil because of the error inherent
in the approximation fordy/d8. The decision should be made
chiefly on how ¢ varies at the airfoil nose and whether it is
approaching a constant value in this region with successive
corrections of the shape.

Distortion of the shape.—The sfream function computed
after the isolated airfoll has been rotated will, in general,
still vary along the boundary. This variation can be re-
duced by distorting the shape of the airfoil. I the distor-
tion is small, the change in distance between any two points
on the boundary will be small, although the change in the
direction of a segment joining those points may be consider-
able. The effect of the distortion on the contribution to
the stream function of the wvortices on the boundary is
consequently neglected. The largest effect of the distortion
will be to change the position of the boundary points in the
uniform stream. The airfoil is therefore distorted in such a
manner that the change In the contribution of the uniform
stream to the stream function will eliminate the variations
in stream function. For points directly opposite each other
on the airfoil, the change in distance will be of the same order
of magnitude as the distortion. Consequently, distortions
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that result in change of thickness of the airfoil converge

very slowly because of the inaccuracy of the fundamental

assumption on which the correction is based.

Thus, when the stream function along the boundary of
the isolated airfoil is known, some number is arbitrarily
chosen as the desired constant value of the stream function.
If Ay=y¢—1 is the difference between the computed stream
function at & point and the desired constant, the point is
moved a distance —A¢/1" perpendicular to the direction
of the mean stream, where the direction of increasing uni-
form stream function is taken as positive. The airfoil in a
cascade is distorted in the same manner, by using the varying
resultant local mean stream veloeity /17 2+ 17,%; corrections
are made with ¢ equal to the mean value of ¢ on the airfoil.

COMPUTATIONAL PROCEDURE FOR CASCADES
CHOICE OF VELOCITY DISTRIBUTION

Several factors influence the choice of the velocity distri-
bution for which an airfoil is to be found. Kspecially in
rotors, sturdy blades are required. Long thin tail sections
must be avoided and where high rotative speeds and stresses
occur, overhang of thin sections is likely to induce blade
failure. The radial distribution of airfoil cross-sectional
area is also fundamental in determining the blade-rcot
stresses. Overhang can be reduced by proper choice of the
velocity diagrams for the sections, but the other factors are
influenced chiefly by the thickness of the section.

The desired thickness may be attained by first assuming &
blade shape and spacing and by then using the stream-filament
method of reference 6 tc compute the velocity distribution
over a portion of the airfoil that determines the thickness.
The spacing may be regarded as fixed but the curvature can
be adjusted if local velocities are too high for the desired
thickness. This computed velocity will then serve as a
guide to the choice of an airfoil velocity distribution, which
should be chosen to avoid high velocity peaks and steep
negative gradienis. If the average of the velocities on

opposite sides of the blade camber line is retained in the

modification of the velocity distribution computed from the
stream-filament method, the thickness will also be retained.

Because of the irrotationality of the Auid motion, the
velocity Integral or circulation around the airfoil must be
equal to that around a blade but over a width equal to one
blade space. Therefore,

f o'(s) ds=T=S(V;1— V5.2

where
T circulation about airfoil
1.1 tangential velocity entering cascade

1.2 tangential velocity leaving cascade

This relation places a condition on the assumed velocity '

distribution.

If the computations thus far have been made in order to
select a velocity distribution for the airfoil cascade In a com-
pressible fluid flow, an equivalent veloeity distribution for
the flow of an incompressible fluid must be determined
before the blade shape can be computed by any method
based on incompressible-flow theory. For suberitical flows,
the directions of the inflow and discharge velocities are
nearly the same for compressible and incompressible flows,
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bub for incompressible flow the component normal to cascade
axis Is the same upstream and downstream. The Kdrman-
Tsien compressibility correction (reference 7) or that of
Garrick and Kaplan (reference 8) may be applied to the
velocity on the blade surface to estimate roughly the corres-
ponding incompressible-flow velocity distribution. The re-
sulting velocity distribution in any case must satisfy the
circulation condition. This procedure does not give an
exact solution for compressible flows, but the resultant com-
pressible flow will have approximately the desired char-
acteristics of low pressure gradients and no high velocity
peaks.

COMPUTATION OF AIRFOIL SHAPE FROM THE CHOSEN VELOCITY
DISTRIBUTION

The numerical computation of the quantities involved in
the preceding analysis, particularly the function f, is ex-
tremely laborious when tables of f,(s,s,) are used. Dlost of
the computations are therefore executed graphically. In the
cascade example, the air was assumed to enter the cascade
at an angle of 45° from the cascade axis and to leave at an
angle of —30° from the cascade axis. The prescribed veloc-
ity distribution is given in figure 3(a). The value of the lift
coefficient for this airfoil is 3.1. The shapes of the isolated
airfoil and the airfoil in cascade are computed by the fol-
lowing steps:

2 Suction surfoce
‘[ -
o ! L B 1 ! ! L !
%) L L5 20 25 30 35 40
S
=/ FPressure surfacé K}
els] (a]
'T_
2 —
/ L.
0 1 1 | 1 1 | I I
5 Lo 1.5 ‘EO 25 30 35 40
S
e S
{b)

(a) Initial airfoil,
(b} Final airfoil.

F1GURE 3.—Presecribed velocity distribution for thick airfoil in caseade.

1. Curves for constant f; for the isolated airfoil, or con-
stant fy (fig. 2) for the airfoil in cascade, are drawn. This
diagram should be made on some transparent material that
will change neither in size norshape. The coordinates of the
curves for constant f; are given in table I.

2. A desired velocity ¢(s) is chosen as a function of the
arc length of the airfoil (fig. 3(a)). An airfoil shape having
the desired total arc length is assumed and is drawn to the
same scale as the plot of f; or f;. The drawing is made on
grid paper and, in the case of a cascade, the z-axis coincides
with the cascade axis (fig. 4).

3. The velocity distribution ¢’(s) is integrated to obtain
the velocity potential o(s). This function is plotted on the
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same chart as the assumed airfoil shape for the corresponding
y-coordinate, as shown in figure 4, by plotting both ¢ and

Y
1L r

0 ®
FiGURE 4.—Plot of airfoil and velocity potential for use in computation,

the y-coordinate of the airfoil against s on a supplementary
graph. In regions of the airfoil where ¥ varies little with s,
that is, where theairfoil boundary is parallel to the z-direction,
o should be plotted against z in the same manner, as shown
in figure 4.

4. In order to find the stream function at a point (x,y)
on the airfoil, f; (s,s,) must be plotted as a function of ¢(s,)
to evaluate the quantity JS7.(s,8.) dels,) of equation (8).
If the chart of f; is superimposed on the airfoil with one vor-
tex center overlying the point (z,y), the value of f, may be
read at (2.5, and the corresponding value of o(x,y,) may
also be read from the plot of ¢(@,y,). The value of f3(s,8,)
is the same as would have been obtained by centering the
chart on (z,y,) because of the symmetry of the function.
A succession of values of ¢ and f are obtained in this fashion
for various positions (z,¥.) that intersect the f; contours,
and a plot of these points {f3,¢) may be made for the assumed
position (z,7). This procedure is illustrated in figure 5 for
a particular point (z,y) on which the f, chart is centered.
The readings for a particular (z,,y,) are shown by the arrowed
lines. The points I to 6 on the blade are shown on the
corresponding f; curve. The discontinuity of ¢ between
points 1 and 6 is the circulation. The discontinuity between
4 and 5 represents the region where f; approaches — o,

5. The proper method of integration then proceeds from
1 through 6 to 7 and then to the origin, with constant f,
from 4 to 5. The region from 4 to 5 with f; approaching
— o is computed by equation (6) or (6b); the constant  is
assumed to be the radius of the near-circle, which corres-
ponds to the value of f, where the discontinuity from 4 to
5 occurs.

The total area including this small addition is

[ aitsied ds= [ 5,5 do

which is the stream function due to vortices on the entire set
of airfoils in cascade. Where f;=0 at the points 4, B, C,
and D (fig. 5), the values of ¢ are noted as ¢4(s), ¢s(s), vc(s),
and ¢5(s). These values are used in computing the stream-
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function change caused by rotating the blade. The stream
function at the point (z, ¥} may now be computed from
equation (8) or (5), and

Kbm: — ‘nyx_[_ sz

AN

FicTtrE 5.—Superposition of figures 2 and 4 to obtain plot of fs against o.

A plot of the stream function (variation from the mean
value) is shown in figure 6 for the initially assumed shape.
Corresponding points on adjacent airfoils have a difference
of AY/17,S equal to 1.0,

o Initial ‘ai~Foil ] '
+ First approxinationt
a Severrii QooroXImarion

\'9——:_\-\0‘{
e N e}

= o
| Ll
=//_/
vl

a 5 1a 5 20 25 34 35 40 45
S

5

FIGTRE 6.—Variation in stream funetion along initial shape and first and seventh approxi-
mations of airfoil caseade.

6. YWhen (s) is known at a sufficient number of points,
the airfoil may be rotated as previously deseribed. For the
isolated airfoil, equations (14) and (17) may be used directly.
For the airfoil in caseade, the coordinates of the centroid of
the airfoil must first be computed by

a:,;:% §r¢’ (8,) ds,

ya:flw §y‘?,<80) ds,
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Before equation (17) can be used to compute dy/d8, the vari-
able quantity V,, must be computed. The vortices in the
region f, >0 are considered to be uniformly distributed along
the cascade axis and the velocity induced by such a distri-
bution is

D= "IL'_

[ I

where v is the vortex strength per unit length along the cas-
cade axis for f; >0. Therefore,

1 /
'Ux:ﬁf‘.” (s0) ds,

where the integral is to be taken over the regions f,”>0. The
region f, >0, y, >y contributes a positive component to o,
whereas the region f, >0, ¥,<{y contributes a negative com-
ponent. The computation is simply carried out by making

use of the fact that the integral for v, is the difference between

values of ¢ at points where f,=0. The values of w,(s,),
e5(8.), ools.), and ep(s,) from step 5 are used at this point
to obtain

20:8= [ ¢'(80) dso=01—op+ T —(0c—0z) (18)
where T is introduced because of the discontinuity in ¢ at
the trailing edge. The sum ¢s—ep-+T gives the effect of
the vorticity in the region f;(s, s,) >0 near the trailing edge,
and the term ge— o3 gives the effect of the vorticity in the
region f3(s,8,) >0 near the leading edge. If either the leading
edge or the trailing edge lies in the region f(s,s,)<0, only
two points of intersection will remain and one of the two

groups of terms in equation (18) will vanish. The quantity
% f o’ (s,) ds, is added to the z-component of the original

uniform stream velocity and the quantity d¢/d8 of equa-

tion (17) may be computed for a number of points and the

angle 8 computed from equation (14), using the values of (r,¥.)

just determined. After these computations have been made,

the airfoil is rotated through the angle 8, and the value
d

:1/—{—Bil is assigned as the value of the stream function of

as
the point after rotation.

7. A value of ¢(s) is known at points along the airfoil
boundary. The mean value over the airfoil ¥ is subtracted
from ¢ leaving A¢. For the isolated airfoil, no subtraction
__ A
VT 24T
in the direction perpendicular to the velocity computed in
step 6. The curve joining the points in their new positions
is the adjusted airfoil.

8. The total arc length of the adjusted airfoil will be
different from the original one, in general, although local
changes in length will be negligible. The airfoil is so scaled
that the length of the suction side is the same length as it was
before distortion because this surface is the critical surface
of the airfoil. This process will result in a change in length
of the pressureside. The velocity over the pressure side ¢’ (s)

is necessary. Rach point is moved a distance—
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must then be altered in such & manner that the difference
in potential between the two stagnation points remains the
same. As aresult, the quantities that retain specified values
are the length and the velocity distribution on the suction
side and the ecirculation around the airfoil. The entire
procedure is repeated with the adjusted shape until the
variations in the stream funection result in very little change
in the shape of the airfoil.

DISCUSSION OF EXAMPLES AND TECHNIQUES

For the example being computed, the stream functions
obtained for the initially assumed shape and the first and
seventh approximations are plotted against the arc length
(fig. 6), which is taken as zero at the trailing edge and pro-
ceeds counterclockwise around the airfoil as shown in
figure 7. The fact that Ay for the initial shape is positive
over the first half of the arc length and negative over the
second half indicates that it is too thick because the required
distortion in shape will make it thinner. The change in
thickness results in a change in velocity distribution over the
pressure side of the airfoil in order to maintain the desired
eirculation. The wvelocity that was originally assumed,
which is equal to the vorticity per unit length distributed on

""" initial qirfoil
Final airforl

FiGURE 7.—Initial shape and final approximation of thick airfoil showing caseade spacing.

the initial airfoil, is shown in figure 3 (a) and the velocity |

over the final shape in figure 3 (b). The length of the
pressure side has increased and the veloecity has decreased
in the portion of 1:1.1.

REPORT NO. 869—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Over the section of the airfoil that has collapsed to zero
thickness, the surface velocities of figure 3 (b) may not have
been obtained, but the loading (ecirculation per unit arc
length), which is the difference in the velocities on opposite
sides, has been realized. In practice, this collapse is pre-
vented by increasing the assumed veloeity on the airfoil
surface.

If the initially assumed airfoil shape has a thickness that
differs considerably from the correct one, the process of shape
adjustment will converge rather slowly. The labor can be
reduced, however, by computing the stream function at a
few points on the airfoil and locating these points to deter-
mine the thickness. This procedure is followed for the first
few approximations until the thickness of the airfoil is fairly
accurate. The stream function is then computed at a
larger number of points, particularly near the leading edge,
in order to get more detail of the shape.

Arbitrary specification of a velocity distribution may
result, not in a physieally real airfoil, but in a figure-8
shape or a collapsed shape (zero thickness over a portion of
the blade). The velocity distribution must then be modified
to obtain a real shape; these modifications should be selected
to keep the desirable properties of the original distribution.
Velocity peaks and steep velocity gradients, which tend to
occur on the suction side of an airfoil, are to be avoided.
If the airfoil collapses, the vorticities of the two sides tend to
cancel each other and the remaining vorticity represents the
difference in velocity across the thin airfoil rather than the
velocity along the boundary.

The method was also applied to the design of a thin airfoil
(camber- line) in a cascade. The vortex distribution is
equivalent to load distribution (difference in velocily across
the airfoil) rather than velocity as in the case of a thick
airfoil. The velocity diagram for the cascade and the desired
load distribution for the thin airfoil are shown in figure 8.
The value of the lift coefficient of the resultant airfoil is 4.1,

S v
“F A "
- o 456
S 2L 30 :
5 1 — |
Q <
g ] N
o \
R /
k]
8]
¢ \
\J — =
g 5 o ¥io)
S
S
FIicurE 8.—Velocity diagram for cascade and preseribed load distribution for thin afrfoll in
cascade.
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The initial shape was obtained by assuming zero sfjacing
between the airfoils. The initial shape and the first and
third approximations to the airfoil shape are shown in figure 9.

---------- Initial air+ot! )
——-~—— First approximatifon
Third approximation

5

F1GERE 9.—Assumed shape and first and third approximgtions of thin airfoil showing cascade
spacing.

The second and third approximations differ very Ilittle.
The third approximsation is redrawn in this diagram {o show
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the spacing between airfoils. The convergence of the method
is shown graphically in figure 10. The variation Ay of the

o tnifial ‘airforl l i
J + First gpproximation
I~ a Second gpproximation
A T
— e~ P R SO
VS 0(———(;— o - o
T = —— ——
/'?// \0\ o1 7é
-/
g 5 1+a r5
s
K}
FIGGRE 10.—Variation in sfream function for successive approximation of thin airfoilin
. cascade.

stream function from its mean is divided by 17S to make it
dimensionless and is plotted against the arc length along the
airfoil where s=0 at the trailing edge. The stream function
commputed on the second approximation is nearly constant,
which gives the third approximation almost the same shape
as the second one. The rapid adjustment of camber con-
trasts with the slow adjustment of thickness. e

Friger Propursiox REsesrcH LABORATORY,
NatioNaL Apvisory COMMITTEE FOR AERONAUTICS,
CLEVELAND, Omio, March 4, 1947.



APPENDIX A
VELOCITY DISTRIBUTION ON THE DERIVED AIRFOIL AT DIFFERENT FLOW ANGLES

Conformal mapping.—When an airfoil is given, the ve-
locity distribution over its surface must frequently be found
at different angles of attack. This problem may be solved
by the method of conformal mapping, which consists in
mapping the region exterior to the airfoil on the exterior of
a circle. The velocity around the airfoil is obtained from the
known velocity around the circle. Procedures for finding
the function that maps a given airfoil into a circle are pre-
sented in references 1 and 9 for the isolated airfoil and refer-
ences 3 and 10 for the airfoil in cascade,.

In general, the procedure for finding the mapping function
of an airfoil is a laborious one. But when, as in the present
case, the velocity distribution over the airfoil at a particular
angle of attack is known, the correspondence between points
on the airfoil and on the circle, and hence the flow velocity
at other angles of attack, can be obtained very easily.
Indeed, the correspondence of points and the velocities for
various angles of attack can be obtained by the method given
in reference 11 from the initial data without knowing the
airfoil shape, because the complex potentials of the airfoil
plane and the mapping-circle plane are equal. Before the
airfoil is designed it is therefore possible to check whether
the airfoil to be computed will be satisfactory under condi-
tions different from the design condition.

Isolated airfoil—The flow about any airfoil shape can be
mapped on the flow about a unit circle in such a way that
corresponding points have the same potential. The flow
about the airfoil is given and the potential funetion ¢(s) at
each point is computed. If the potential function on the
airfoil is computed by integrating the velocity from the
stagnation point at the trailing edge in a counterclockwise
direction around the airfoil oriented as in figure 1, the poten-
tial will be zero at the trailing edge, decrease to a minimum
omin bt the stagnation point at the leading edge, and then

increase to a value equal to the circulation T at the trailing -

edge. The corresponding flow about the circle is determined
by the conditions that it must have the same values of ¢p4,
and T for a correspondence to exist between all airfoil and
circle points. If ¢, is the central angle of the stagnation
point on the cirele that corresponds to the trailing edge of
the airfoil,

Témir— — (cob fp-+0pt1r/2)

P (A1)

Equation (A1) can be solved numerically for 8, because all
the other quantities are known. The velocity at infinity in
the circle plane V, can then be determined from the Kutta-
Joukowsky condition, which requires that ¢, be a stagnation
point; that is,

T
" 4z sin 6p

V.= - (A2)
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The velocity potential at points on the circle is

w.=—2V,cos 0-{-5—7? +2V, cos GT—LGT (A3)

27

The quantity 2V, cos GT—% fris a constant thatissubtracted

in order to make ¢~=0 at the stagnation point correspond-
ing to the trailing edge.

The correspondence of points on the airfoil with points on
the circle is obtained by associating points where ¢(s)=0..
The velocity on the circle at a uniform stream flow angle a is

e(6,0) =2V [sin (§+«) —sin (0r+ )] (*\4:)

The nature of the conformal transformation is such that the
ratio of the velocity at a point on the airfoil to the veloeity
at the corresponding point on the circle is independent of
angle of attack. Therefore, the velocity ¢4 (s) on the airfoil
at flow angle « is

ea'(8) _ ()

.(0.2) —2.00.0) (A5)

where the design flow angle is taken as zero. Equation (A3)
can be used to compute the veloecity distribution on the air-
foil exeept at the two points that were stagnation points at
the design angle of attack. )

Airfoils in cascade.—The flow about a cascade of airfoils
can be mapped conformally into the flow about a unit circle
with two singular points located on the real axis symmetri-
cally with respect to the center of the cirele. These singular
points correspond to the points at infinity in front of and
behind the cascade, respectively. In a cascade of airfoils,
the distance of these points from the center ol the cirele is
uniquely determined by the same conditions that determine
the flow about the circle in the isolated case; namely, the
circulation per airfoil, the velocity potential at the leading
edge, the blade spacing, and the upstream and downstream
fow angles.

The distance from the singular points to the center of the
circle is denoted by ¢, The flow about the circle is such
that the location of the stagnation points 6, is determined
by the relation

_ I siné; , €08 85 A

TVSsinh K °°8 M Gosh & S0 (46)
where X is the angle of inclination of the mean stream to the
normal to the cascade axis. (See reference 6 for details.)
The quantities T', V, S, and X are known from the flow in
the cascade plane and therefore equation (A6) provides 4

relation between K and the location of the stagnation points.
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The velocity potential at any point on the cirele is

-

VS _, sin#é _, cosg N\, T _, tan @
Ces="_ <bm“an smh g eosMtanh™ SR et i '
VS . _y Sin 6y qcosbz\, T  __, tanér -
[Tﬂ_‘ (sm N tan Sh K cos : tanh cosh & -{-2F tan™ TR (A7)

where 87 is the particular value of 8, corresponding to the trailing edge of the airfoil. The expression in brackets is 2
constant so chosen that the potential will vanish at the stagnation point corresponding to the trailing edge of the airfoil. In
order to map the cascade on the circle, K must be found so that the value of ¢, , at 8y, the stagnation point ¢, corresponding
to the leading edge of the airfoil, is equal 10 ¢ni, the value of the velocity potential there. The identity

. \ )
(;}111111 gjs{ sinh? K-ﬁ-(éﬁi %{ cosh? K=1

¢0s s . .
cosh Kfrom equation (A8) to give

is used to eliminate

f 2 -
sin 6, _ _2—-%18 cosh? K sin A4 cos )\\/ cosh? K—cos?® R_(‘——Q‘?S) cosh® K sinh? K (A8)
sinh A cosh® K—cos? A

sin 8y  cos fy
sinh K’ cosh K’

sin O cos fr o . . . - e R .

SR and oL These values are inserted into equation (A7) to find ¢.. at 8=0y. If <. .([0y) is not equal to oni,

In successive approximations, a value of K is assumed and equations (A8) and (A6) are used to find

another value of K is chosen, on the premise that ¢, .(8y) will decrease as K is decreased. When ¢, (6y) is evaluated,
care should be taken to use consistent values of the inverse tangents. After two values of K and ¢, .(fy) are determined,
interpolation or extrapolation may be used for new values of K.

When K has been found, it is used in equation (A7) to evaluate ¢.,. at values of 4 all around the ecircle. A point on
the circle corresponds to the point on the airfoil where ¢(s)=¢,. . The velocity at the point 8 on the cirele is

VS sinh 2K cos § _ cos by . sin §  sin fr
Fe o™= Cosh 2K —cos 20 |:COS A <cosh K cosh K)—[—sm A (sinh K sinh K)] (49)

and the velocity ¢./(s) on the airfoil at any other mean
flow angle A4+« is

. y \ 9""(8)
La (‘S) =, L‘(e})\—l- Oi) m (AIO)
as in the case of the isolated airfoil.

The designed airfoil was mapped on the unit circle by the
method deseribed. The constant K, the natural logarithm
of the distance from the singular points to the center of the
unit eirele, is 0.075. The correspondence between points
on the airfoil and those on the circle is plotted in figure 11,
whiech shows the arc length of the airfoil as a function of the
central angle of the circle. The velocity at any point on the
airfoil for any angle of attack « may be obtained from
gquations (A9) and (A10), the velocity distribution as in
figure 3 (b), and the relation between s and @ as in figure 11.
The ratio 'v:((;g\)
computed only once for any given airfoil.

is equal to dé/ds (radians) and need be

-f00 -50 g 50 100 150 200
Cenfral angle of circle, B, degrees

[ i
-200 -150

F1aURE 11.—Correspondence between points on airfoil and points on unit circle by conformal
transformstion.



APPENDIX B

DERIVATION OF THE CASCADE EQUATION

An equation is to be developed for the complex velocity
at any point in the field of flow of a fluid past a row of equally
spaced, congruent bodies. Coordinates axes are chosen with
the origin inside one of the bodies and the z-axis in the
direction of the row. (See fig. 12.) The body containing

Y
|
|

258 (!

%%—-

BQ"’_S'—>B

>

(N+ 15 )&

By B,

|‘ A
. |

FI16URE 12.—Diagram for derivation of equation for flow about eascade.

e f<N+1/2>s w (xo—zﬂd a+f W [(N+1/2)S+1y,]

(NS Le—U—2
In an evaluation of these integrals, the function 1’(z,) is
periodie, with period S, and approaches a constant value
infinitely far from the cascade; that is,

w'(2,)
R Ee—&

W (2o TY )=y a8 Y—>
and

W' (o~ 1Y,) =W 8s Y>— @

J*cN FDS W (5,—if)

(N412)s To—i—2

(N+YD S
dr,=w,’ f

The first of these integrals is
‘wj-,f(f\r.'rlfz)s d:?a —
— (N2 8 Xo—il—2z

as N— and >, provided that ¢/(NS) — 0.

w,’ log

(N+1/2)S Wy (I'a-’lt) d’ N

J —(NL1s Eo—t—2 n==
N

Sz Lo —’Li-—"
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RISy (2,4 1f)
¢ (N+ 1/2)S+%Z/a—2%dy°+f<zv+1/z)s Toi—2

(NS Le— T —2

the origin is denoted by By, bodies along the positive di-
rection of the z-axis by By, B,, . . ., and along the negative
direction of the z-axis by B_;, B_s, . . .. A circle 4 of small
radius is drawn about the point z where the velocity is to
be determined. A rectangle R is drawn with its center at
the origin and its sides parallel to the axes of length @N-+1)S
and width 2¢, which contains the bodies By, . .. B,
By, By, . . . By, and the circle 4. If a side of the rectangle
intersects one of the bodies, the side may be distorted to go
aréund the body with no essential change in the proof.
The function w'(z,)/2,—2) is an analytical function of z in
the region inside the rectangle R but outside the bodies B,
and the circle A.

Therefore

e = L

The first integral can be broken up into four integrals,
one along each side of the rectangle, namely,

0+J‘—éw — (N+1/2)S+1y,]

N+ 12)SF g~z W
From the last of these conditions, it follows that

N

>3 w <z")d 20=0 (B1)

n=—NJ B @0

T,+it—z
(132)

w' (2,—1t) = wy (2,—1t) +uy’
where _.
wy' (2,—1t)—0 as t—> o
Therefore, the first integral on the right side of equation
{B2)is -
dzx, f(N—Hfz ’wsl(xa—lf)d

(NS To—it—2

(B3)

[(N+1/2)S—it—z]

’

[—(NF1/2)S—it—z]

82y (x,—1t)
nZTN J—sp &+ nS—it—

_fs”z Wy’ (£,—11) d

: —>7r’iw1

The last integral in equation (B3} is

S ! (g —it)
(-12)8 To—H—2

dro

sp2 e _
9+2f 2(% t—2ywy’ (x,—1t) dz,

S T,—it—2) P —n2S?
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If ¢ is chosen sufficiently large so that|ws’ (z,—1if) | e, where e is any preassigned positive number, the moduli of the mtegrals

are less than

[f _dz, 'EV fsiz 2, —it—z| dx, ':l l:f ‘l‘i fslz 2 (wo—a) + G+ y)odiajl
~sp [o—tt—2| " = J-sp [(@—1t— 2 —n2SY 52 \(zo—7) "_{_ E+y)t _§2 (Z—2) P (t_:_y)z_nzso

When N— o, this quantity approaches

Si2 T
€ cot [Sx/(-vg—ﬂf)g'r(f y)*

This integral is finite and, because ¢ can be made arbitrarily
small as f— e, the last integral in equation (B3) approaches
zero. 'Therefore,

f(N+1/2)s W (2,—if)

. dz—miwy’
— (N2 8 To—il—2

as i—« dnd ”\;S —0. In the same way and under the same

conditions,

DS (32,1t .
f _ﬁl_) dr —>wiw,
(NHE  Loti—2

The second and fourth integrals on the right side of equa-
tion (B2) -can be evaluated by combining them. Because
w’ 1s periodic,

W [(N+1/2)S+iy]=w[— (N+1/2)S+1y,]
and therefore,

f b [(N+1/2)S+iy,]
L INE12) ST iy—=

The velocity w/'[(WN-+1/2)S-+1y,] is bounded for all wvalues of w,;
The absolute value of the infegral is less than

[w'[(N+1/2)S+iy ]| <.

ay,

2SNHYDT [ et

__2SINFYDW T, iy
VINLip)ST—a ‘_ JINF1R)S—2

. =t [—(N+1/2)S+1y,]
wdyot f (N1 SFiy—2z" .

15T *23(‘\7“/°)“f Wt

—tan™t

[t — 2N+ 128w [(NL1/2)S+iy] -
w= | P e
there 1s a constant 117 such that

that is,

dy,
(N+1/2)28?—2?

VTIPS —2 .

Asf—>= and %8—90, this quantity approaches zero. If has By the residue theorem,
4 =z
been shown, therefore, that when t—« and -‘\%S'%O’ w(z,) dz,=2x1w"(2) (B5)
i AZg—EZ
~ 11.}’(20) d’ -, (w’Lw /) ('_84) . . .
Jr Zo—z oA T The periodicity of w’(z) implies that
N w(z,) N f w(z,)
0 Jy = — %0 s
RE—NJB: €6—Z d e n=—NJ B -’vaTnS_" ¢
2 z
(‘ w'( _LZ ’L(li(z"l)_(“’ . 2) d40—>f s W (2, cot & (40—7) dz, (B6)
B: Ba [

as N>,

When equations (B4), (B5), and (B6) are substituted into
equation (B1), the expression for the complex velocity is
obtained:

,”1( )— (/wlr‘!‘wz)'—— f wa (49) cot 5 ( —Z) (ITag (B7)

883026—50——15

The complex potential is obtained from equation (B7) by
integrating with respect to z and neglecting the arbitrary
constant, o

w(z)=zwm’+%L 1w’ (z,) log smg (z—z,) dz, (BS8)

"y’

5 is the mean stream velocity.

where w,,/=
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APPENDIX C
SYMBOLS

The principal symbols used throughout the report are
listed here for convenience of reference.

O e L

fo= %T log [sin2 % (z—2,) +sinh? g (y—ya)]

K natural logarithm of distance from singular point to
center of circle corresponding to cascade airfoil

total arc length of airfoil

distance between successive airfoils in cascade

arc-length parameter corresponding to z.

arc-length parameter corresponding to z,

magnitude of uniform or mean stream velocity in air-
foil or cascade plane (fig. 1)

V. magnitude of uniform stream velocity in circle plane

V. z-component of uniform or mean stream velocity 17

<& »

V.. resultantlocal mean stream z-component of velocity ¥

Vv, y-component of uniform or mean stream velocity V

v, local velocity on circle corresponding to isolated
airfoil . __ -

v.,. local velocity on cu-cle corresponding to airfoil in
cascade

o, velocity induced by vortices in region ;>0

w complex potential function, o4y

w,’  complex velocity of mean stream for airfoil in cascade
[:wm’=%"(w1’—}—w2’)=Vx—iV:l

w,”  complex velocity of uniform stream for isolated airfoil,
Ve—iV,

£ real part of z

x., Y. coordinates of point about which airfoil is rotated
(centroid of vortex distribution for cascade airfoils)

Y imaginary part of 2

z coordinate of point where stream function is com-
puted, x-+iy

2o coordinate of point where vortex is located, z,+1y,

angle of inclination of unlform stream velomty to

r-axis

B angle through which airfoil is lotated

r circulation about airfoil

v(z;) vortex strength per unit arc length at z,

] central angle of ecircle

O angle of stagnation point on eircle corresponding to
leading edge of airfoil

B angle of stagnation point on circle corresponding to

trailing edge of airfoil
214

A

L,

angle of inclination of mean flow to normal to ecascade
axis (fig. 1)
velocity potential on airfoil, Rw(z)]
es, values of ¢ at points A, B, C, D, respectively, where

¢c,op  curve of o(s,) Intersects fo(s, 8,)=0 (See fig. 5.)

Pe

Le.c

velocity potential on circle corresponding to isolated
airfoil

velocity potential on circle corresponding to airfoil in
cascade

emin  velocity potential at leading edge of airfoil

¥
¥m
Yu

¥
Ay

stream function, ITw(z)}

stream function of mean stream of cascade flow

stream function of uniform stream flowing about
isolated airfoil

mean value of stream function over airfoil

variation of stream funetion, y—y¢

Subscripts 1 and 2 when appended to w/, V', and 17, indicate
inflow and discharge values, respectively.

10.

11.
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ISOLATED AND CASCADE AIRFOILS WITH PRESCRIBED VELOCITY DISTRIBUTION

TABLE I. COORDINATES OF folz—x,, y— o)
(a) Values of (y—w.)/S

N
N\, S
N o 0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 0.45 0.50
Al o\
1
4
—0.40 0.0257
—.38 L0292
—.36 .0331
—3¢ -0375
—.32 -0425
—8.30 0. 0481
—.28 .0545 0.0229
—~.26 0618 L0371
—2 .0699 -0497
—.22 -6791 -0621
-0.20 0.0894 0.0750
—.18 L1010 -0887 0.029%
—.16 -1140 .1035 -0620
— 14 L1236 .1198 L6871
—.12 1447 -1369 .1107 0.0392
—0.10 0. 1626 0.1550 0.1344 0.0581
—.08 L1824 S L1588 124 0.0454
—.06 -2041 .1993 L1844 1572 .1103
—.04 2207 .2236 L2113 L1806 . 1558 0.1014
—.02 -2532 -2498 -239% X - 1966 -1 0.1096
0 0.2805 0.2778 0. 2694 0.2553 0.2354 0.20%6 0.1777 0. 1400 0.0968 0.0496 0.0000
.02 L3097 .3074 . 3008 .2892 L2737 L2542 .2318 . 2081 L1858 .1692 .1629
S04 L3405 -33%6 -3331 .3239 L3117 -2968 -2804 -2633 ~2491 ~2359 -2352
.06 .3728 -3713 -3668 13505 -3493 3384 -3%60 .3139 ~3036 . 2965 -2940
.08 . 4064 . 4052 L4016 3958 .3s81 3793 3608 -3603 .3533 - 3432 3464
¢.10 0.4412 0. 4402 0.4373 0. 4327 0. 4267 0.4188 0.4126 0.4038 0. 4001 0. 3964 0.3951
.12 -4769 - 4761 - 4739 L4702 ~ 4635 -1601 -4545 . 4403 L4451 L4433 413
.14 -5135 -5129 L5111 . 5082 .5045 - 5003 . 4960 -4920 . 4867 -4859
.16 L5203 5303 -5438 5166 5437 -5404 -5371 5340 -5316 -5209 5204
.18 - 5886 L5882 -5871 -5853 -5830 -5805 5779 5735 ~5736 5724 -5720
0.20 0.6269 0.6266 0.6257 0.6243 0.6225 0.6205 0.6185 0. 6167 0.6152 0.6143 0.6140
.22 . 6655 . 6653 . 6648 . 6635 . 6621 . 6606 .65%0 L6576 . 6565 . 6357 . 6555
.24 7044 -7042 ~7037 L7029 7018 7 -6994 -6983 L6974 G ~6966
-2 -T436 L7434 -7430 LT424 JT415 7106 L7396 L7588 7381 1317 7375
.28 -7829 7828 L7825 -T820 -7813 - 7806 _7e98 7792 Ti8T 7783 7782
0.30 0.8224 0.8223 0.8221 0.8217 0.8211 0. 8206 0.8200 0.8195 0.8191 0.8188 0.8187
.32 -8620 -8619 -8617 5614 -8610 -8606 -8601 8307 .8304 -8582 -8502
.34 -9017 . 9016 L9015 -9012 -9009 -5005 .9002 -8999 -8997 -8395 8995
.36 9415 -gd414 9413 SG411 -8409 9408 -9403 L9401 -6309 -9358 -9397
.38 L9813 9812 .8811 L8810 -9808 - 9306 -6804 .9502 -8500 .9800 -G799
0.40 1.0211 1.0211 1.0210 1.6209 1.0207 1.0206 1.020¢ 1.0203 1.0201 1.0201 1.0201
.42 1.0610 1.0610 1.0609 1.0608 1.0607 1.0606 1.060¢ 1.0603 1.0602 1.0602 1.0602
44 1.1009 1.1909 1. 1008 11008 11007 1.1006 11005 11004 1.1003 1.1003 1.1003
46 1.1408 1.1408 11108 11407 11467 11406 1.1405 1.1404 1.1404 1.1403 1.1403
.48 1.1808 1.1807 11807 1.1807 11806 11806 1.1805 1.1805 1.1804 1.1504 11504
0.50 1.2207 1.2207 12207 1.2206 1.2206 1.2206 1.2205 1.2205 1.2204 12204 1.2204
.52 1. 2607 1. 2607 1.2607 1.2606 12606 1. 2608 12605 1.2605 1.2505 1.2605 1.2605
-84 1.3007 1.3006 13006 1.3006 1.3006 1.3006 1.3005 1.3005 1.3005 1.3005 1.3005
.56 1.3406 1.3106 1.3106 1.3106 1.3406 13106 1.3405 1.3405 1.3405 1.3405 1.3405
.58 1.3806 1.3206 1.3806 1.3306 1.3506 13806 1.3505 1.3805 1.3305 1.3805 1.3505
0.60 1.4206 1.4206 L4206 14206 1.4206 1.4206 1.4205 1.4205 1.4205 1.4205 1.4205
.62 1. 4606 1. 4606 1.4506 1. 4606 1. 4606 1. 4606 1. 4605 14605 1.4605 1.4805 14605
.64 1.5006 1. 5006 1. 5006 1.5006 1.5006 15006 1.5005 1.5005 1.5005 1.5005 1.5005
-66 15406 15406 1.5406 1.5406 1.5106 1.5406 1.5106 1.5405 1.5405 1.5405 15405
.68 1. 5806 1.5806 1. 5206 L 5308 1.5806 1.5806 15206 15805 1.5805 1. 5805 15805
0.70 1.6206 16306 1.6206 1.6206 1.6206 1.6206 1.6206 1.6205 1.6205 16205 16205
TABLE I. COORDINATES OF f;(z—=z,, ¥—y.)—Coneluded
(b) Values of (z—=z,)/S
A ¥—te
S
N— 0 0.025 0.050 8.075 0.100 0.125 0.150 0.175 0. 200 0.225 6.250
fr ] \ ~
M N
—0.40 0.0258 0.0060
—.38 .0283 . 0151
—.36 . 0332 0217
—34 -0377 .
—.32 -0438 .0346
—0.30 0.0485 0.0414 N
—.28 -0551 0439 0.0219 -
—.25 .0625 -0572 .0367
-2 ~0710 0663 -04%6
—.22 .0508 - 6786 5 0.0256
~0.20 0.0918 0.0882 0.0761 0.0500
—.138 L1046 L1013 0008 -0760 0.0148
—.16 _1192 -1163 -1071 0897 .0571
— 14 -1362 1336 1254 1165 -0854 0.0317
—12 - 1559 -1535 .1:62 ~1330 L1323 . 0782
—0.10 0. 1791 0.1769 0.1702 0-1585 0.1405 0. 1137 0.0685
—.08 -2068 L2047 .1985 L1877 1717 L1490 L1160 0.0572
—.06 .2403 . 2386 .23%6 -2225 2076 L1813 . 1508 1204 0.0463
— 04 -2837 -2816 - 2756 - 2654 . 2509 2317 - 2068 L1743 .1290 0.0408
—.02 -3437 -3414 L3344 L3220 .3072 L2871 L2624 .2321 L1942 L1432 0.0457
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